Drosophila melanogaster: A Platform to Study Therapeutic Neuromodulating Interventions


  • Ruchi Sharma Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
  • Rohit Sharma Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India




Drosophila melanogaster, Neuromodulator, neurotransmitter, Dopamine, Octopamine, neuropeptide, astrocytes


The Drosophila melanogaster (fruit fly), is a crucial and straightforward model organism for researching how genetic changes affect behavior and neural activity. Drosophila is used by biologists to study the nervous system because of its genetic tractability, well-known complex behaviors, straightforward neuroanatomy, and numerous human genes orthologs. Due to the Drosophila central nervous system's diminutive size, neurochemical studies are difficult. Recently, electrochemistry-based techniques have been created to monitor the release and clearance of neurotransmitters in real time in both larvae and adults. So, in this study Drosophila models used to study neuromodulator activity were reviewed and compiled using various databases. It is possible to take a close look at the functional role of traditional neuromodulators like octopamine, serotonin, dopamine, and neuropeptides using the genetic toolkit of Drosophila. This study compiles neurotransmitter role such as dopamine, serotonin, and octopamine production in both genetically normal and mutant flies. The fly is a system that is well-suited to shed new light on the complex issue of how neuromodulation might link behavioral demands particular to a given scenario with the level of arousal in the brain. The fly has powerful genetic tools and increasingly well-defined behavioral circuits.


Metrics Loading ...


Loftus TM, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 2000;288:2379–2381. Doi: 10.1126/science.288.5475.2379. PMID: 10875926

Pfaff et al. Mechanisms for the regulation of state changes in the central nervous system: an introduction. Ann. N. Y. Acad. Sci. 2008;1129:1–7. Doi: 10.1196/annals.1417.031. PMID: 18591464

Melcherr et al. Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man. J. Endocrinol. 2007;192:467–472. Doi: 10.1677/JOE-06-0066. PMID: 17332516

Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 2011;63:411–436. Doi: 10.1124/pr.110.003293. PMID: 21415126 PMCID: PMC3082451

Neckameyer WS. A trophic role for serotonin in the development of a simple feeding circuit. Dev. Neurosci. 2010;32:217–237. Doi: 10.1159/000304888 PMID: 20714156

Williams et al. Obesity-linked homologues TfAP-2 and Twz establish meal frequency in Drosophila melanogaster. PLoS Genet.10 (2014). PMID: 25187989 PMCID: PMC4154645 DOI: 10.1371/journal.pgen.1004499

Shen P, Cai HN. Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. J. Neurobiol. 2001;47:16–25. Doi: 10.1002/neu.1012 PMID: 11257610

Riemensperger et al. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc. Natl. Acad. Sci. USA. 2011;108:834–839. PMID: 21187381 PMCID: PMC3021077 DOI: 10.1073/pnas.1010930108

Huang et al. Neuromodulation of Courtship Drive through Tyramine-Responsive Neurons in the Drosophila Brain. Current Biology. Volume 26, Issue 17, 12 September 2016, Pages 2246-2256. PMID: 27498566 PMCID: PMC5021585 DOI: 10.1016/j.cub.2016.06.061

Sayin et al. Internal State Dependent Odor Processing and Perception—The Role of Neuromodulation in the Fly Olfactory System. Front. Cell. Neurosci., 30 January 2018. Sec. Cellular Neurophysiology. Volume 12. https://doi.org/10.3389/fncel.2018.00011. PMID: 29440990 PMCID: PMC5797598

Shinya Yamamoto and Elaine S. Seto. Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms. Exp Anim. 2014; 63(2): 107–119. Published online 2014 Apr 26. Doi: 10.1538/expanim.63.107 PMID: 24770636 PMCID: PMC4160991

Yamamoto K., Vernier P. The evolution of dopamine systems in chordates. Front Neuroanat. 2011. 5: 21. PMID: 21483723 PMCID: PMC3070214 DOI: 10.3389/fnana.2011.00021

Freeman et al. Sleep fragmentation and motor restlessness in a Drosophila model of Restless Legs Syndrome. Curr. Biol. 2012. 22: 1142–1148. PMID: 22658601 PMCID: PMC3381864 DOI: 10.1016/j.cub.2012.04.027

Niens et al. Dopamine Modulates Serotonin Innervation in the Drosophila Brain. Front. Syst. Neurosci., 16 October 2017. Volume 11, 2017. https://doi.org/10.3389/fnsys.2017.00076 PMID: 29085286 PMCID: PMC5650618

Sombati S, Hoyle G. Generation of specific behaviors in a locust by local release into neuropil of the natural neuromodulatur octopamine. J. Neurobiol. 1984;15:481–506. PMID: 6097645 DOI: 10.1002/neu.480150607

Amanda Crocker and Amita Sehgal. Octopamine Regulates Sleep in Drosophila through Protein Kinase A-Dependent Mechanisms. J Neurosci. 2008 Sep 17; 28(38): 9377–9385. PMID: 18799671 PMCID: PMC2742176 DOI: 10.1523/JNEUROSCI.3072-08a.2008

Gerbera Claßen and Henrike Scholz. Octopamine Shifts the Behavioral Response From Indecision to Approach or Aversion in Drosophila melanogaster. Front. Behav. Neurosci., 03 July 2018, Volume 12, PMID: 30018540 PMCID: PMC6037846 DOI: 10.3389/fnbeh.2018.00131

Yang et al. Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5219-24. Doi: 10.1073/pnas.1417838112. Epub 2015 Apr 6. PMID: 25848004; PMCID: PMC4413307.

Nässel DR, Winther AM. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol. 2010 Sep;92(1):42-104. Doi: 10.1016/j.pneurobio.2010.04.010. Epub 2010 May 4. PMID: 20447440.

Wu et al. A neuropeptide regulates fighting behavior in Drosophila melanogaster. Elife. 2020 Apr 21;9:e54229. Doi: 10.7554/eLife.54229. PMID: 32314736; PMCID: PMC7173970.

Cornell-Bell et al. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990;247:470–473. PMID: 1967852 DOI: 10.1126/science.1967852

Charles et al. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron. 1991;6:983–992. PMID: 1675864 DOI: 10.1016/0896-6273(91)90238-u

Dani et al. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 1992;8:429–440. PMID: 1347996 DOI: 10.1016/0896-6273(92)90271-e

Ma et al. Neuromodulators signal through astrocytes to alter neural circuit activity and behavior. Nature. 2016 Nov 17; 539(7629): 428–432. PMID: 27828941 PMCID: PMC5161596 DOI: 10.1038/nature20145.

Ingiosi AM, Frank MG. Goodnight, astrocyte: waking up to astroglial mechanisms in sleep. FEBS J. 2022 Mar 10:10.1111/febs.16424. doi: 10.1111/febs.16424 PMID: 35271767 PMCID: PMC9463397

Nagai et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron. Volume 109, Issue 4, 17 February 2021, Pages 576-596. Doi: https://doi.org/10.1016/j.neuron.2020.12.008 PMID: 33385325 PMCID: PMC7897322

Pramod Kumar P, Harish Prashanth KV. Diet with Low Molecular Weight Chitosan exerts neuromodulation in Rotenone induced Drosophila model of Parkinson’s disease. Food Chem Toxicol. 2020 Dec;146:111860. Doi: 10.1016/j.fct.2020.111860. Epub 2020 Nov 16. PMID: 33212211.

Sitaraman et al. Serotonin is necessary for place memory in Drosophila. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5579-84. Doi: 10.1073/pnas.0710168105. Epub 2008 Apr 2. PMID: 18385379; PMCID: PMC2291120.

Huser et al. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One. 2017 Aug 4;12(8):e0181865. Doi: 10.1371/journal.pone.0181865. PMID: 28777821 PMCID: PMC5544185

Ries et al. Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment. Nat Commun 8, 15738 (2017). Doi: https://doi.org/10.1038/ncomms15738 PMID: 28585544 PMCID: PMC5467214

Blakely RD, Edwards RH. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb Perspect Biol. 2012;4:22199021. PMID: 22199021 PMCID: PMC3281572 DOI: 10.1101/cshperspect.a005595

Fei et al. Trafficking of vesicular neurotransmitter transporters. Traffic. 2008;9:1425–36. PMID: 18507811 PMCID: PMC2897747 DOI: 10.1111/j.1600-0854.2008.00771.x

Dikeakos JD, Reudelhuber TL. Sending proteins to dense core secretory granules: still a lot to sort out. J Cell Biol. 2007;177:191–6. PMID: 17438078 PMCID: PMC2064127 DOI: 10.1083/jcb.200701024

Boehning D, Snyder SH. Novel neural modulators. Annu Rev Neurosci. 2003;26:105–31. PMID: 14527267 DOI: 10.1146/annurev.neuro.26.041002.131047

Fowler CJ. Transport of endocannabinoids across the plasma membrane and within the cell. Febs J. 2013;280:1895–904. PMID: 23441874 DOI: 10.1111/febs.12212

Kitamoto et al. Isolation and characterization of mutants for the vesicular acetylcholine transporter gene in Drosophila. J Neurobiol. 2000;42:161–171. PMID: 10640324

Daniels et al. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci. 2004;24:10466–74. PMID: 15548661 PMCID: PMC6730318 DOI: 10.1523/JNEUROSCI.3001-04.2004

Liu et al. A cDNA that supresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992;70:539–551. PMID: 1505023 DOI: 10.1016/0092-8674(92)90425-c

Greer et al. A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin and octopamine. J Neurobiol. 2005;64:239–258. PMID: 15849736 DOI: 10.1002/neu.20146

Fei et al. Trafficking of vesicular neurotransmitter transporters. Traffic. 2008;9:1425–36. PMID: 18507811 PMCID: PMC2897747 DOI: 10.1111/j.1600-0854.2008.00771.x

Fei et al. Membrane topology of the Drosophila vesicular glutamate transporter. J Neurochem. 2007;101:1662–1671. PMID: 17394549 DOI: 10.1111/j.1471-4159.2007.04518.x

Brooks et al A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a neurotransmitter system. Neuron. 2011;72:316–29. PMID: 22017990 PMCID: PMC3201771 DOI: 10.1016/j.neuron.2011.08.032

Brunk et al. The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J Biol Chem. 2006;281:33373–33385. PMID: 16926160 DOI: 10.1074/jbc.M603204200

Corey et al. A cocaine-sensitive Drosophila serotonin transporter: Cloning, expression, and electrophysiological characterization. Proc Natl Acad Sci USA. 1994;91:1188–1192. PMID: 8302852 PMCID: PMC521479 DOI: 10.1073/pnas.91.3.1188

Demchyshyn LL, Pristupa ZB, Sugamori KS, Barker EL, Blakely RD, Wolfgang WJ, Forte MA, Niznik HB. Cloning, expression, and localization of a chloride-sensitive serotonin transporter from Drosophila melanogaster. Proc Natl Acad Sci USA. 1994;91:5158–5162. PMID: 8197200 PMCID: PMC43951 DOI: 10.1073/pnas.91.11.5158

Porzgen P, Park SK, Hirsh J, Sonders MS, Amara SG. The antidepressant-sensitive dopamine transporter in Drosophila: a primordial carrier for catecholamines. Mol Pharmacol. 2001;59:83–95. PMID: 11125028 DOI: 10.1124/mol.59.1.83

Makos MA, Han KA, Heien ML, Ewing AG. Using In Vivo Electrochemistry to Study the Physiological Effects of Cocaine and Other Stimulants on the Drosophila melanogaster Dopamine Transporter. ACS Chem Neurosci. 2010;1:74–83. PMID: 20352129 PMCID: PMC2843917 DOI: 10.1021/cn900017w




How to Cite

Sharma, R., & Sharma, R. (2023). Drosophila melanogaster: A Platform to Study Therapeutic Neuromodulating Interventions. Indo Global Journal of Pharmaceutical Sciences, 13, 22–29. https://doi.org/10.35652/IGJPS.2023.13003