Directly Compressible Sustained Release Matrix Tablets of Losartan Potassium via Crystallo-co-agglomeration
DOI:
https://doi.org/10.35652/IGJPS.2023.13002Keywords:
Crystallo-co-agglomeration, Losartan Potassium, Matrix tablets, Spherical agglomerates, Sustained releaseAbstract
Background: Losartan potassium possesses poor bioavailability due to low elimination half-life and so requires to be developed as sustained release dosage form. Objectives: The present study was intended to prepare directly compressible sustained release matrix tablets of losartan potassium using hydrophilic polymer. Methods: Directly compressible agglomerates of drug were prepared by crystallo-co-agglomeration technique employing HPMC K100M as release retardant polymer. Prepared agglomerates were subjected for evaluation of flow, packing and compaction properties. Morphology of spherical agglomerates was studied by photomicrography and DSC and FTIR were performed to study drug-excipient compatibility. Optimized formulations of crystallo-co-agglomerates were then compressed into matrix tablets. Tablets were evaluated for various pharmacopeial and non-pharmacopeial tests. In-vitro dissolution study performed to evaluate drug release. Results: Results for agglomerates indicated superior flow; packing and compaction properties compared to pure drug and suggested utilization of agglomerates for direct compression tableting. DSC and FTIR proved that drug did not undergo structural and/or polymorphic changes in presence of polymer. Photomicrography images confirmed spherical shape of agglomerates. Results observed for evaluation of tablets were within the compendia limits. In-vitro dissolution study revealed extension of drug release for significantly prolonged period of time. Conclusion: Crystallo-co-agglomeration method can be successfully utilized for preparation of directly compressible sustained release matrix tablets.
Metrics
References
Gohel, M.C., Jogani, P.D., Marg, B.S.D. A review of co-processed directly compressible excipients. J. Pharm. Pharmaceut. Sci., 2005, 8(1): 76–93. PMID: 15946601
Zhe Li, LiJie Zhao, Xiao Lin, Lan Shen, Yi Feng. Direct compaction: An update of materials, trouble-shooting, and application. Int. J. Pharm., 2017, 529 (1-2): 543-556. Doi: https://doi.org/10.1016/j.ijpharm.2017.07.035 ; PMID: 28720538
Goczo, H., Szabo-Revesz, P., HasznosNezdei, M. Development of spherical crystals of acetylsalicylic acid for direct tablet-making. Chem. Pharm. Bull., 2000, 48(12): 1877-1881. Doi: https://doi.org/10.1248/cpb.48.1877 ; PMID: 11145135
Kawashima, Y., Imai, M., Takeuchi, H., Yamamoto, H., Kamiya, K. Improved flowability and compactibility of spherically agglomerated crystals of ascorbic acid for direct tableting designed by spherical crystallization process. Powder. Technol., 2003, 130(1-3): 283-289. Doi: https://doi.org/10.1016/S0032-5910(02)00206-1
Patil, S.V., Sahoo, S.K. Spherical crystallization: a method to improve tabletability. Res. J. Pharm. Tech., 2009, 2(2): 234-237.
Gohel, M.C., Parikh, R.K., Shen, H., Rubey, R.R. Improvement in flowability and compressibility of ampicillin trihydrate by spherical crystallization. Ind. J. Pharm. Sci., 2003, 65(6): 634-637.
Usha, A.N., Mutalik, S., Reddy, M.S., Ranjith, A.K., Kushtagi, P., Udupa, N. Preparation and in vitro, preclinical and clinical studies of aceclofenac spherical agglomerates. Eur. J. Pharm. Biopharm., 2008, 70(2): 674-683. Doi: https://doi.org/10.1016/j.ejpb.2008.06.010 ; PMID: 18606224
Chourasia, M.K., Jain, N.K., Jain, S., Jain, N.K., Jain S.K. Preparation and characterization of agglomerates of flurbiprofen by spherical crystallization technique. Ind. J. Pharm. Sci., 2003, 65(3): 287-291.
Tapas, A.R., Kawtikwar, P.S., Sakarkar, D.M. Preparation of carvedilol spherical crystals having solid dispersion structure by the emulsion solvent diffusion method and evaluation of its in vitro characteristics. In: Mastai Y (ed) Advances in Crystallization Processes, 2012, pp 633–648. ISBN:978-953-51-0581-7.
Maghsoodi, M., Esfahani, M. Preparation of microparticles of naproxen with Eudragit RS and Talc by spherical crystallization technique. Pharm. Dev. Tech., 2009, 14(4): 442–450. Doi: https://doi.org/10.1080/10837450902748404 ; PMID: 19235551
Cui, F., Yang, M., Jiang, Y., Cun, D., Lin, W., Fan, Y., Kawashima, Y. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. J. Control. Rel., 2003, 91(3): 375–384. Doi: https://doi.org/10.1016/s0168-3659(03)00275-x ; PMID: 12932715
Kawashima, Y., Niwa, T., Takeuchi, H., Hino, T., Ito, Y. Control of prolonged drug release and compression properties of ibuprofen microspheres with acrylic polymer, Eudragit RS, by changing their intraparticle porosity. Chem. Pharm. Bull., 1992, 40(1): 196-201. Doi: https://doi.org/10.1248/cpb.40.196 ; PMID: 1576674
Sorathia, K., Shah, D. Sustained release spherical agglomerates of tiaprofenic acid prepared by quasi-emulsion solvent diffusion method. Asian. J. Pharm., 2016, 10(4): S700- S710. Doi: https://doi.org/10.22377/ajp.v10i04.912
Jadhav, N., Pawar, A., Paradkar, A. Effect of drug content and agglomerate size on tabletability and drug release characteristics of bromhexine hydrochloride-talc agglomerates prepared by crystallo-co-agglomeration. Acta. Pharm., 2010, 60(1): 25–38. Doi: https://doi.org/10.2478/v10007-010-0002-2 ; PMID: 20228039
Hu, R., Zhu, J., Chen, G., Sun, Y., Mei, K., Li, S. Preparation of sustained release simvastatin microspheres by the spherical crystallization technique. Asian. J. Pharm. Sci., 2006, 1(1): 47-52.
Maghsoodi, M., Taghizadeh, O., Martin, G.P., Nokhodchi, A. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique. Int. J. Pharm., 2008, 351(1-2): 45–54. Doi: https://doi.org/10.1016/j.ijpharm.2007.09.033 ; PMID: 17980983
Maghsoodi, M., Tajalli Bakhsh, A. Evaluation of physico-mechanical properties of drug-excipients agglomerates obtained by crystallization. Pharm. Dev. Tech., 2011, 16(3): 243-249. Doi: https://doi.org/10.3109/10837451003610837 ; PMID: 20175665
Raval, M., Sorathiya, K., Chauhan, N., Patel, J., Parikh, R., Sheth, N. Influence of polymers/excipients on development of agglomerated crystals of secnidazole by crystalloco- agglomeration technique to improve processability. Drug. Dev. Ind. Pharm., 2013, 39(3): 437-446. Doi: https://doi.org/10.3109/03639045.2012.662508 ; PMID: 22380546
Genikal, B., Rajendra, A. Formulation of crystallo-co-agglomerates of naproxen: study of effect of polymers on drug release. Int. J. PharmTech Res., 2013, 5(3): 852-864.
Gadekar, S., Kale, V., Abhishek, C., Keshav, M. Development of extended release formulation for 5-amino salicylic acid using Coagglomeration technique. Der. Pharma. Lett., 2011, 3(3): 212-219.
Sorathia, K., Shah, D. Design and evaluation of sustained release spherical agglomerates of Fluvastatin sodium by crystallo-co-agglomeration. J. Appl. Pharm. Sci., 2017, 7(09): 99-108. Doi: http://dx.doi.org/10.7324/JAPS.2017.70914
Johnston, C. Angiotensin receptor antagonists: focus on losartan. Lancet, 1995, 346: 1403–1407. Doi: https://doi.org/10.1016/s0140-6736(95)92411-6 ; PMID: 7475826
Baka, E., Comer, J.E., Takács-Novák, K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J. Pharm. Biomed. Anal., 2008, 46(2): 335-341. Doi: https://doi.org/10.1016/j.jpba.2007.10.030 ; PMID: 18055153
Rangari, N.T., Puranik, P.K., Chaudhari, S.R. Spectrophotometric determination of losatan potassium in pure form and in tablet dosage form. Int. J. PharmTech. Res., 2015, 8(1): 142-145.
Tapas, A., Kawtikwar, P., Sakarkar, D. An improvement in physicochemical properties of carvedilol through spherically agglomerated solid dispersions with PVP K30. Acta. Polo. Pharma. Drug. Res., 2012, 69(2): 299-308. PMID: 22568045
Heckel, R. Density-pressure relationships in powder compaction. Trans. Metall. Soc. AIME, 1961, 221(1): 671-675.
Heckel, R. An analysis of powder compaction phenomena. Trans. Metall. Soc. AIME, 1961, 221(1): 1001-1008.
Armstrong, N., Haines-Nutt, R. Elastic recovery and surface area changes in compacted powder systems. Powder. Technol., 1974, 9(5): 287-290. Doi: https://doi.org/10.1016/0032-5910(74)80054-9
Fell, J., Newton, J. Determination of tablet strength by the diametral compression test. J. Pharm. Sci., 1970, 59(5): 688-691. Doi: https://doi.org/10.1002/jps.2600590523
Parida, R. Evaluation parameters for spherical agglomerates formed by Spherical crystallisation technique. Int. J. Pharma. Bio. Sci., 2010, 1(3): 1-10.
Bankar, G.S. and Rhodes, C.T. Eds. Modern Pharmaceutics. 3rd edn., Marcel Dekker, Inc. New York, 1996, pp 668-669.
Kar, R., Mohapatra, S., Bhanja, S., Das, D., Barik, B. Formulation and in vitro characterization of xanthan gum-based sustained release matrix tables of isosorbide-5- mononitrate. Iran. J. Pharm. Res., 2010, 9(1): 13-19. PMID: 24363701 PMCID: PMC3869548
Teychené, S., Sicre, N., Biscans, B. Is spherical crystallization without additives possible? Chem. Engg. Res. Des, 2010, 88(12): 1631-1638. Doi: https://doi.org/10.1016/j.cherd.2010.02.015
Paradkar, A.R., Pawar, A.P. Jadhav, N.R. Crystallo-co-agglomeration: A novel particle engineering technique. Asian. J. Pharm., 2010, 4:4-10. Doi: 10.4103/0973-8398.63975
Ramberger R., Burger A. On the application of the Heckel and Kawakita equations to powder compaction. Powder. Technol., 1985, 43(1): 1-9. Doi: https://doi.org/10.1016/0032-5910(85)80073-5
Procopio, A., Zavaliangos, A., Cunningham, J. Analysis of the diametral compression test and the applicability to plastically deforming materials. J. Mat. Sci., 2003, 38(17): 3629-3639. Doi: https://doi.org/10.1023/A:1025681432260
Chavda, V., Maheshwari, R. Tailoring of ketoprofen particle morphology via novel crystallo-co-agglomeration technique to obtain a directly compressible material. Asian. J. Pharm., 2008, 2(1): 61-67. Doi: https://doi.org/10.22377/ajp.v2i1.177
Maghsoodi, M., Hassan-Zadeh, D., Barzegar-Jalali, M., Nokhodchi, A., Martin, G. Improved compaction and packing properties of naproxen agglomerated crystals obtained by spherical crystallization technique. Drug. Dev. Ind. Pharm., 2007, 33(11): 1216-1224. Doi: https://doi.org/10.1080/03639040701377730 ; PMID: 18058318
Kawashima, Y., Aoki, S., Takenama, H., Miyake, Y. Preparation of spherically agglomerated crystals of aminophylline. J. Pharm. Sci., 1984, 73(10), 1407-1409. Doi: https://doi.org/10.1002/jps.2600731021 ; PMID: 6502490
Ebube, N., Hikal, A., Wyandt, C., Beer, D., Miller, L., Jones, A. Sustained release of acetaminophen from heterogeneous matrix tablets: influence of polymer ratio, polymer loading, and co-active on drug release. Pharm. Dev. Tech., 1997, 2(2): 161-170. Doi: https://doi.org/10.3109/10837459709022621 ; PMID: 9552442
Shanmugam, S., Chakrahari, R., Sundaramoorthy, K., Ayyappan, T., Vetrichelvan, T. Formulation and evaluation of sustained release matrix tablets of losartan potassium. Int. J. PharmTech. Res., 2011, 3(1): 526-534.