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INTRODUCTION 
Drug discovery for any disease is always an important process 

not only for human welfare but also for pharmaceutical 

industries which invest nearly 1.8 US dollars and a time of 

more than a decade to bring a new drug to market [1]. From 

2019 with starting of this pandemic (COVID-19) the need for 

fast and efficient drug discovery increased [2]. One of the 

methods in the drug discovery pipeline is to reduce the time 

required to gather more information from basic science and 

research [3]. The translational drug discovery method is an 

effective approach not only in new drug discovery but also 
allows research and treatment to be patient-specific. 

Bioinformatics is an interdisciplinary science that uses 

molecular data for drug discovery. In bioinformatics 

molecular data of patients, animals, different disease models, 

cell lines, and controls are compared to connect symptoms of 

disease with epigenetic modifications, mutations, other 

changes [4]. Bioinformatics helps in the identification of drug 

targets that can function in resorting to cellular activities or in 
removing malfunctioning cells. It also helps in providing 

information of possible drug candidates to target or design 

therapeutic approaches against a particular disease and can 

also help in evaluating effect of environment on health of 

different human beings with potential drug resistance.   

 

Drug repurposing is a very recent technique of re-evaluating 

old drugs and drug compounds in the pharmaceutical industry 

for therapeutical potential towards other diseases [5].  

Repurposing of old drugs helps in faster drug development 

with a great impact on personalized medicine. Bioinformatics 

with repurposing significantly reduce research and 
development time and financial burden on pharma industries 

[6]. In this chapter, we are discussing different bioinformatics 

tools for drug product development in pharmaceutics that can 
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make the process of drug discovery and repurposing faster and 

cheaper.  

 

TARGET BASED BIOINFORMATICS 

TOOLS 
To discover a potential drug, it is necessary to identify 

whether the target is druggable or not. Target-based analysis 

helps in reducing the risk of project failure and saving time 

and money investments [7]. Identification of drug-target 

includes understanding the molecular data including gene 

sequence analysis, protein interaction, and metabolic pathway 

analysis [8]. Target identification also needs combining data 

from genomics, proteomics, transcriptomics, and metabolic 

aspects of a disease. Computational target analysis is a most 

rigorous exercise that includes a study of the human genome 
and associated annotations, algorithms for gene sequence 

analysis, protein structure prediction, and proteomics analysis 

[9].   

 

1. Gene to Target Method 
In the gene to target method initial step is to select a common 
group of drug targets followed by designing a computational 

method to discover new members of this group to forecast 

their function based on the available information and 

knowledge of the target group [10].  The first step of target 

identification is a screening of the gene sequence database. 

The Discovery of new members of a target gene class is an 

important part of drug discovery and understanding the 

molecular basis of a disease condition. The two important 

strategies in early target prediction are; a) Genome data 

mining, and b) Expressed sequence tags [11]. 

 

a) Genome Data mining: Human genome sequence data 
mining is used to detect new protein-coding genes that can 

become the new targets. G-protein coupled receptors (GPCRs) 

are one of the most important targets of protein classes for 

drug discovery, studied using primary database search tools 

such as BLAST (Basic Local Alignment Search Tool) or 

PRINTS (Protein Fingerprints) [12].  Some studies reported 

BLAST and PRINT as significant tools for GPCRs 

identification whereas some studies found them insufficient as 

GPCRs is a very divergent family of proteins with strikingly 

small similar sequences shared between the groups. 

Researchers focused on other in silico methods to overcome 
the limitations of BLAST and PRINT by incorporating other 

features like trans-membrane topology, amino acid 

configurations, and physiological properties of these GPCRs 

[13]. ab-initio is another technique for gene sequence 

prediction and is helpful in the discovery of new GPCR targets 

[14].  

 

b) Expressed sequence tags (ESTs): A large number of 

expressed sequence tags helps in the collection of resources 

for gene identification, their characteristics, and tissue-specific 

gene expression [15]. The most specific function of the ESTs 

database is to classify new gene expression levels. Researchers 

like Wittenberger et al. (2001) used EST database search 

method to find new GPCRs family with 14 new ESTs, five of 

which GPR84, 86, 87, 90, and 91 were experimentally 

validated as promising candidates for new putative GPCRs 

[16]. Out of these five GPR86 was reported to be the center of 

many pathophysiologies and immune system diseases. A 

similar investigation was also conducted by Marvanova et al. 

(2002), who used ESTs as an initial point for map brain 

expression and as a potential drug target [17].  

 

Understanding gene function is also one of the essential 
requirements for drug target identification [18]. In silico 

method of bioinformatics is used to explain the gene function 

but still finding protein function is the most challenging issue 

in this bioinformatics era. In different organisms most studied 

like Escherichia coli and Plasmodium falciparum also have 30 

to 60 % of their functions of all identified genes are still 

unknown [19]. The biggest limitation in studying gene 

function is the absence of fully assayed signal-specific 

metabolic events and expected changes in protein 

phosphorylation and gene expression [20].    

 

2. Disease based approaches 
The target identification for drug designing needs basic 

knowledge of the etiology of disease and its related biological 

processes and control systems [21].  The disease-based 

approach focuses on a particular disease or therapeutic 

category of the disease. Different pharmaceutical companies 

focus on different diseases for target identification. To 
discover gene expression profiles in disease to find drug target 

microarray technology is used as it can identify novel 

molecular targets and related therapeutically biochemical 

pathways [22]. Microarray technology also helps in 

understanding disease regulatory networks, their biological 

processes, and related cellular pathway which leads to the 

identification of potential drug targets. The next step is to 

reduce the drug target gene which appears centrally related to 

the disease etiology [23]. To identify the possible drug targets 

for Alzheimer's disease, Cellzome Ltd used the microarray 

technique to develop a series of small molecule γ- secretase 
modulators [24].   

 

COMPUTATIONAL DRUG REPURPOSING 

TOOLS 
Computational drug discovery includes drug repurposing in 

which a large number of servers some of which are available 

online free and some are paid are used for drug-target 

interaction studies [25]. Some of the steps (Figure 1) used are: 

 

a) Ligand fingerprint encoding- The basic principle in using 

ligand cantered calculations for fingerprint encoding is 
useful due to their structural resemblance and 

comparability in biological functions and properties [26]. 

To detect unknown leads, previous knowledge of the 

same type of compounds and their target binding is 

required. The data available of publicly accessible 
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compounds are huge in comparison to studied and 

screened data based on target – agnostic ligand- 

similarity-based strategies [27].  

 

b) ChemMapper- ChemMapper is a 3D similarity algorithm 

also known as SHAFTS (SHApe-FeaTure Similarity) to 

find the polypharmacological appearance of a target. It 

uses a triple hashing method for fast alignment of 

molecular confirmation by using shape and chemical 

structure type for assessing alignment [28]. ChemMapper 

assimilates data related to target annotation from different 
sources like KEGG (Kyoto Encyclopedia of Genes and 

Genomes), ChEMBL, BindingDB, and Protein data bank 

[29]. To validate data from SHAFTS standard virtual 

screening data set are used and also to identify targets 

[30].  

 

c) ChemProt- It provides a heat map that connects bioactive 

compounds with proteins that have a database of more 

than 7 million stored connections collected from 

annotating compounds and diseased proteins [31]. 

ChemProt is one of the biggest confederated database sets 
of proteins, diseases, and interactions collected from 

different sources [32]. Concerning drug reposting, it 

offers a similarity ensemble approach (SEA), 

reimplementation, and Quantitative Structure-Activity 

Relationships (QSAR) and it also provides an ensemble-

based estimation of the probable target to query 

molecules. The query molecules can be associated with a 

drug set and a related map provides a technique to direct 

the known connections as per the combined database [33]. 

To assess new interactions similarity of fingerprints is 

used to produce a set of like drugs. Simplified Molecular 

Input Line Entry System (SMILES) shows the prediction 
can be input first then followed by protein selection from 

the available list and finally downloaded as positive or 

negative prediction results but till now no validation has 

been found about any prediction [34].  

 

d) Molecular Docking method – It is a method to forecast 

the intermolecular complex structure between two known 

molecules and it also helps to find the best suitable ligand 

orientation which can make a complex with overall least 

energy [35]. These 3D positions of connected ligands can 

be seen by using different visualizing tools available such 
as pymol and RasMol [36]. They help in interpreting the 

best fit ligand and the result will be given in the form of a 

score based on docking algorithms made because of 

different possible combinations of the structure. In 

molecular docking different macromolecules like lipids, 

proteins, and nucleic acid are important to predict affinity 

between these molecules for finding a suitable drug 

candidate. X-ray crystallography and NMR (nuclear 

magnetic resonance) are used to find the structure of the 

macromolecules [37]. This stimulation method analyses 

the time-dependent behavior of macromolecules and gives 

information about polypeptide-based protein structure 

[38].  

 

During proteomics study a different aspect of drug interaction 

like modifications in protein abundance, their relation 

partner’s network, and explains cellular processes. The use of 

bioinformatics tools and proteomics can make analysis faster 

and easier. Validation of target with technology helps in drug 

product development [39]. The main hurdle in drug target 

selection is finding potential drug targets. Another important 

issue with drug product development is the selection of drug 
targets from a limited pool of potential drug targets [40]. Due 

to incorrect target identification, most of the drugs fail to cross 

the early pre-clinical stage. Support vector machine is a new 

technique to predict drug-target based on protein sequence 

properties in place of homology annotation and 3D structures. 

This method is 84% accurate in tenfold validation and 

differentiating significant drug targets from non-drug targets 

[41].  

 

The tools used for target validation are  

a) Gene logic- It is a foremost integrated genomics 
company that provides laboratory information 

management system solutions, and reference 

genomic database [42]. The database consists of gene 

expression data of tumors and normal cells. This 

target list is then screened for their functional target 

validation. This database also provides expression 

patterns of gene expression and their level of 

expression in different disease tissues. Researchers 

can use this database to study the expression pattern 

of different proteins which can play important role in 

drug discovery. Another known technology is 

Ribonucleic interference Intradigm, which is based 
on RNA interference technology (RNAi) where 

siRNA oligos use gene inhibitors for damaging 

homologs mRNA with high efficiency and specificity 

[43].  In disease conditions like cancer, autoimmune 

disease, and inflammation Intradigm focuses on the 

angiogenesis pathway. siRNA delivery gives high-

value information in regards to studying the role of 

proteins or gene-related to disease processes, 

numerous genes of the similar pathway, and 

connection of different pathways to disease. 

Information of siRNA is also critical for drug target 
discovery and significant therapeutic siRNA 

production [44].  

 

b) Immusol – It provides an inducible RNAi vector that 

can be introduced to cell culture resulting in RNAi 

expression. It can be used for target validation as its 

recently launched technology for fast and effective in 

vivo target validation [45]. The study of the inducible 

vector was done on xenograft tumor mouse model in 

which aptamers nascacells work together with 

aptamers that binds with the active site were small 

molecules of drug binds to deactivate functional 
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epitope present on a protein without affecting other 

structures [46]. These aptamers mimic the small drug 

molecule and help in differentiating between many 

post-translational modifications by deactivating 

stable proteins using physiological turnover rate [47].  

 

c) Lead Identification- A process that starts with 

compound library screening. Focusing on compounds 

that are related to target proteins and modulating their 

activities [48].  It is a complex process of drug target 

identification in which the confirmed hits are further 
optimized to be better drug candidate identification. 

Lead optimization is done by modification of 

complex structures of the compounds. Computational 

scrutinizing helps in performing the complex task of 

lead optimization in less time with more accuracy 

[49]. After successful lead optimization, the next big 

hurdle is predicting drug toxicity.  

 

 

 
Figure 1: Flow chart of Bioinformatics tools for drug 

discovery. 

 

Some of the drugs optimizing software database are:   

i) Comprehensive medicinal chemistry database – This 

database gives important information in regards 
to biochemical processes of drug target class 

consisting of pKa, and Log P data of about 8,000 

molecules [50].  

ii) Drug bank- A database that provides comprehensive 

information of various drag targets linked with 

their pharmacological and chemical constituents. 

It also provides information on gene sequence, 

structure, and related pathways. This drug bank 

provided many drug-target data for some of the 

rare diseases and help in drug product 

development [51].  

iii) PharmaGKB – A computational method or tool 
which can predict the reaction of a drug in 

comparison to variations in the human genome. 

It is a big pharmacogenomics database that 

includes information related to doses, gene-drug 

association, and correlation of genotype and 

phenotype [52].  

iv) Quantitative structural activity relationship database- 

It is a technique used to predict biochemical 

properties and their activities in the human body 

which are not tested but have structural 

similarities with other drug compounds [53].  

 

1. Web-based tools 

The web-based integrating system connected with the 

biological network helps unscrupulously mark 

pharmacological properties of drugs to repurpose them. These 

interaction databases save various information related to drug-

related entities including targets. In the web-based approach, 

ligand-target connections are multi-dimensional. They are also 

known as network-based polypharmacology and algorithm 

systems developed. Some of these networks are: 

 
a) Balestra Web: It is used to predict interfaces of leads, drug 

targets based on AL (active learning), and collaborated 

filtering techniques. Operators can only discover repurposing 

chances by using drug-drug and target–target likeness in 

different tabs [54]. The drugs and drug targets approved from 

drug banks forms nodes of the bipartite graph. The interaction 

present on the edge of the bipartite graph represents known 

interactions that are used to study LV (latent variable vectors) 

expressing each drug protein. Latent variable vectors dot 

products of drug-target pair are the power of interfaces that 

can be forecasted using this method [55]. An AL method is 
adopted based on PMF (probabilistic matrix factor) to 

calculate the statistical weight of all drug targets which are 

associated with approved drugs. BalestraWeb depends on 

interaction profiles to predict any drug target without 

depending on their chemical or structural similarities [56]. 

PMF is an extensively validated method, which is validated by 

using 4 different classes of targets and five-fold validation.  It 

is also reported that validation with another 2 drug target 

network topology-based learning algorithms shows the power 

of 3 algorithms differ in all four target classes [57].  

 
b) Chemical Similarity Network Analysis Pull-down 

(CSNAP) – It uses an arrangement of CSN and chemical 

agreement to make a chemo-type based sub-network to 

forecast targets in different drug classes. ChEMBL, PubChem, 

and many similar bioactivity databases are used to recover 

compounds and indirectly contain bioactivity facts to match 

them with target hits [58]. Target annotations and query 

compounds are collected into CSNs and the priority of the 

consensus statistic is target prediction by using the frequency 

of target and other neighbor query compounds. CNSAP is 

used in cluster compounds to separate small networks which 

represent a specific chemotype [58]. In CNSAP the 
compounds are shown by cluster nodes and similarity of target 

by edges whereas the ligands are represented by FP2 

fingerprints which are compared by Tanimoto coefficient and 

trials of Z-score similarity [59]. 
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Ligands with structural diversity can also become part of a 

similar sub-network due to connection metric which is based 

on chemotypes. The neighbor compounds are ranked using S-

score and the significance of every compound protein group is 

calculated by H-score. This method is used as a benchmark for 

the SEA method. It also has a high analytic ability in the case 

of pre-annotated target protein in 6 different classes and is 

specifically known for drug promiscuity. DUD (Discovery of 

Useful Decoys) are used to collect diverse data sets and 

CSNAP helps in explaining target compounds using high 

throughput chemical screens because they have 
characteristically nonspecific binding patterns [60]. A study of 

212 mitotic compounds was performed using CSNAP to 

identify compounds with known structure in comparison to 

new mitotic drug targets, also to produce novel microtubules. 

CSNAP is considered the largest and most effective web-

based tool for multivariate chemical screen profiling [61].  

 

c) DASPfind – It uses drug-drug, drug–target, and target – 

target based three different subgraphs to discover new drug-

target connections [62]. These connections are recovered 

using BRENDA (Braunschweig Enzyme Database), Drug 
bank, KEGG, and SuperTarget to create a new 

heterogeneously interconnections network that can rank new 

associations. The similarity is the weight of an edge between 2 

drugs which is measured by using SIMCOMP (SIMilar 

COMPound), whereas in protein-protein interaction is 

calculated by using the Smith and Waterman algorithm [63]. 

The weight graph in DASPfind is made of nodes as drugs and 

proteins. DASPfind depends on a simple path to discover new 

connections and the score is produced by penalizing a longer 

path [64]. The result of these calculations is validated by 

HGBI (Heterogeneous Graph Based Inference) data sets by 

using established data sets of approved drugs from 
DrugBanks. The best function of DASPfind was observed 

with a subjective test that use ‘top 1+’ candidates [65]. The 

predictive strength of any tool can only be confirmed based on 

a database or old literature search. Using these databases a 

researcher can only hypothesize new drug targets but they 

cannot be validated.  

 

d) Domain Tuned Web (DT- Web) - It is a tool that covers 

approval based on bipartite network projection by combining 

old drug-drug, drug–target, and target-target interactions to a 

diverse network [66]. Then these web-based edges are 
connected to DT- Hybrid algorithm. This tool takes input as 

three matrices including a drug-drug similarity matrix using 

SIMCOMP (SIMilar COMPound) creating a drug similarity 

matrix. The similarity score of target-target protein interaction 

depends on the sequence similarity of these proteins. These 

target similarities can also be obtained using BLAST, Smith-

Waterman, and the validated drug-target interactions and 

adjacency matrix can be obtained by Drug Bank. Every drug 

target interaction is made of 3 different matrices, each of these 

interaction networks between drug-target is mapped by using 

Entrez identifier and the annotations with (GO) Gene 

Ontology terms [67].  

In ontology directed acyclic graph node distance is used to 

compute similarity for each pair of GO. The P-value of each 

drug is used to mark the interaction between the targets 

predicted and validated. DT- Web can predict the 

combinations of drugs with optimal target connotation 

benchmarks just by gene sequence data input. The evaluations 

of DT-Web are based on tenfold cross-validation followed by 

30 repetitions and its performance is calculated by using 

precision and recollection enhancement and average AUC 

(Area under the ROC Curve) for 20 top predictions. Studies 

till now confirm the improved function of DT-Web in 
comparison to NBI and Hybrid [68].  

 

e) nAnnolyze – It offers a web-based edge to network-based 

relative docking method known as Annolyze. In this method, 

only protein structures with the solved 3D structure are used 

[69].  In this network four important components used are; 

PDB (Protein Data Banks) components that apply 

pharmacological effects on crystallized proteins, human 

structural proteins from ModBase, DrugBank compounds, and 

LigBase based protein binding sites. nAnnolyze uses a 

bipartite network structural connections and similarities.  
 

In this method, a subnetwork of ligands is made by using PDB 

ligands with drug-likeness above a particular threshold. 

Random Forest Classifier (RFC) derived from similarity is 

used to reduce the subnetwork to a k-core network for 

avoiding redundancy [70]. The protein subnetwork is made by 

applying targets that can bind ligands together above a drug-

likeness threshold. ProBis is a network-based tool that is used 

to link structural similarities of binding sites with the same 

filtering as ligand sub-network is connected. Human structural 

proteomics results from purifying structures of protein by 

using ModBase and ProBis, also two subnetworks with known 
ligand-target interactions are merged using PDB. A large part 

of DrugBank compounds is connected by RFC for calculating 

similarity and edge adding to best similar compounds to ligand 

sub-network. Different studies on eAnnolyze use positive 

benchmarks made of drug-protein sets annotated between 

PDB and FDA (Food and Drug Administration) permitted 

drugs [71].  

 

f) Promiscuous – It is the first web-based public network that 

can be used for repurposing. This network is made of proteins, 

drugs, side-effects as nodes, drug side effects, and interactions 
of drugs- targets, drug-drug, and protein-protein working as 

edges [72]. This web-based network collects data from 

different public databases like Uniport, SIDER (Side Effect 

Resource), PDB, and SuperDrug. PROMISCUOUS helps in 

predicting a drug target by transitive mapping but does not 

provide a rank or prioritize the target prediction of any kind. It 

provides an explorative network output [73]. Most researches 

showed it as the best tool for drug identification by using 

Memantine which is used for dementia but also repurposed for 

treating Parkinson. Memantine is the same as Amantadine 

which is used as an anti-Parkinson drug, both share NMDA 

glutamate. Semantic link association prediction (SLAP), 
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forecasts the association between a drug and its target by using 

database incorporation and statistical modeling. SLAP 

function depends on path patterns that are pre-defined 

association paradigms comparing between nodes and edges 

[74]. Nodes and edges are part of a sematic network made by 

using protein-protein, and drug-drug similarities with drug-

target interactions from Chem2Bio2RDF and ontology 

semantic annotations [75]. The original drug target sets built 

by the above connection network were recovered from 

DrugBank. To find the shortest path between 2 nodes of length 

less than 3, the Heap-based Dijkstra algorithm is used. The 
target predicted is ranked as P-value and related association 

score, which is the sum of total validation of 2 nodes and their 

z-scores [76].  

 

The edge can receive inputs as drug-pair, drug-to output 

predicted targets, and drugs with the same biological activity 

and only protein and connected links. Authentication of 

forecast drug–target relations through SLAP was done by 

MATADOR. They show better presentation in comparison to 

other similar link forecasting methods by calculating 

AUROCs. These results can be compared with SEA for drug-
target forecasting with CMap for predicting drug associations 

[75].  

 

g) Search Tool for Interacting chemicals (STITCH) – It is the 

most modified version of the search tool that focuses on 

providing substantially broad maps of drug-target associations 

with the most refined filters and imaging [77]. In these years 

in which a huge number of the database are connected with the 

author or server to provide details. It provides common lines 

that incorporate data resources of different drug target 

connections starting from high throughput experiments to 

physically curated databases and to many analytical 
algorithms.  Additionally, this STITCH also applied 

automated text mining algorithms that can forecast 

interactions based on the co-existence of data in different web 

databases like NIH RePORTER, PubMed, and MEDLINE. 

Each version brings in grades of selectivity and adds different 

resources like; users of version 5 can filter out connections 

created on tissue specificity [78]. Every important set of 

information is recorded separately and combined with 

statistics from text mining.  

 

In STITCH, the confidence-based scores show the level of 
significance and confidence of a connection [79]. The inputs 

in STITCH are accepted in the form of names of chemical 

compounds, genes, structures of proteins, and chemical 

compounds as the query. The edge thickness of drug-target 

connections is measured according to binding affinity which 

shows all known Ki values. STITCH is a well-firmed source 

with all updates which provides the user with many published 

studies from different groups that directly uses result from this 

site [80]. Binding site parameterization is important for 

STITCH as these are the region present in protein structure 

that binds with non-bonded interaction. The binding region 

also has many conserved regions that can be used for 

identifying new protein structures and related fold families. 

These methods of target hunting based on binding site 

resemblance mapping algorithms are revised for better search 

results.  

 

h) ProBis - Protein Binding site (ProBis) uses native binding 

sites likeness as the basic index to discover the targets 

matching with the query. It practices the maximum clique 

algorithm under the same nomenclature for physiochemical 

and structural properties of components and backbone of 

amino acids to compare two different protein binding sites 
[81]. In response to a quire related to protein, ProBis gives 

results in the form of similar binding sites, nucleic acid 

particles, forecasted ligands, and small molecular binding 

patterns. This database works as a repository for a huge 

number of non-redundant binding sites and related PDB 

structures that are updated weekly [82]. Users of this database 

can choose pre-calculated data to receive an immediate result. 

The only limitation for ProBis is it can only accept protein as a 

query and does not accept drugs as input [83].  

 

i) Pocket Similarity Search using Multiple Sketches (PoSSuM) 
– It is a web-based search tool that is based on an algorithm 

that can search the complete PDB database for all similar 

bindings [84]. A ligand-binding region is considered 

significant if the result is in the form of a probe cluster with 

more than 200 probes. A ligand-binding site is a set of amino 

acids near a non-polymer molecule known as a putative 

binding site.  PoSSuM accepts three different types of inputs 

which are; a) ligand-binding site, b) protein structure and c) 

ligand.  PoSSuM, when searched with a PDB protein 

structure, finds all similar ligand binding sites, similarly, with 

ligand binding query the result will be in the form of a similar 

site to the input [85].   
 

The query in PoSSuM can be studied by using ligand binding 

sites or putative binding sites as inputs or both can also be 

used. The output of the query will be in the form of one 

million similar binding sites. Based on geometric and 

physicochemical properties, the binding sites are programed as 

feature vectors and related sites are inserted using SketchSort, 

which is a fast search algorithm. A ligand can also be used as 

a query and the result is in the form of binding site sets which 

are like pockets with ligands known as bind. Measures of 

likeness are specified using P-value and cosine similarity [84]. 
The dissimilarities in ligand binding sites are represented by 

root mean square deviation. Similarities of all the pairs can be 

applied to more than three million ligand binding sites and 

around twenty-four million associated sites with 6 residues 

that configure the PoSSuM social database. PoSSuM has a 

limitation as its result validation is yet not obtained [55].  

 

In this chapter, we have included most of the database for drug 

target identification-related servers but these are not all, a few 

other databases that are used to predict drug-target association 

are DRugome, PROteome, and DISeasome also known as DR. 

PRODIS which uses the FINDSITEcomb algorithm to find 
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similarity-based targets and it also depends on assumptions 

that depend on evolutionarily related proteins having similar 

functions with binding capacity to similar types of ligands. 

Another is Drug E-bank that uses resemblance based features, 

hybrids, and descriptors with joint learning method to find the 

drug targets, whereas Self Organizing map based Prediction of 

Drug Equivalence Relationship (SPiDER) forecast the targets 

by using Self Organizing Maps (SOM), estimates of 

pharmacophore descriptors, and physiochemical properties of 

drug compounds.  

 

2. Disease linked Drugs 
To develop drug products, it is important to study the relation 

of a drug to a disease condition and the tools to study 

annotations dependent disease connotations. Disease-based 

methods are developed during the absence of pharmacology of 

drug or present but not considerable. Computational 

approaches which use drug-disease connections are researched 
and reviewed many times and the 2 most common types based 

on web access are; MeSHDD, and MEDLINE.  

 

a) MeSHDD – MeSH based drug-drug similarity and 

repositioning (MeSHDD) is a cluster-based on drug-drug 

similarities resulting in connection which are based on disease 

cantered MeSH as found in MEDLINE [86]. The input is the 

drug name that is searched for similar matches consists of 

approved drugs from DrugBank. MeSH co-existed drug 

similarity is calculated using Bonferroni corrections and 

hypergeometric P-value. In this method, the drug-drug 
resemblance is measured by calculating the bitwise distance 

achieved from converting the P-values into binary symbols 

[87].  

 

These methods consist of clustered drugs based on group-wise 

distance and mean values of bootstrap clustering methods and 

Jaccard index used to match clustering of different k values. 

The cluster of disease is measured by comparing data from 

TTD. MeSHDD was used to validate the discovery of 

Metformin against cystic fibrosis [86].   

 
b) RE-fine drugs – This method is based on the integration of 

drug-gene-disease data in a transformative method to produce 

drug-disease connections, forecasting new suggestions for 

current drugs [88]. In this web-based tool, the disease is used 

as a query with output in the form of a list of drugs possible to 

be used as drug treatment. RE-fine drug tool classifies 

forecasted drug-disease pair as known or repurposed 

connections when present in drug bank. These drugs are 

strongly maintained if related drug data is present in NIH 

clinical trial registry or literature but if not found in any of 

these registers then considered as novel. Daclizumab is a renal 

disorder drug that was repurposed for asthma by using the RE-
fine drug tool [55]. Drug-induced gene expression is used to 

compare mRNA expression in research based on cell lines to 

predict the drug-disease expression before it should be used 

for therapeutic use. Gene expression works as a disease 

signature that can help in describing the effect of a drug on the 

human system. Gene expression not only helps in 

understanding drug mechanisms and new biomarkers of a 

disease, but its signature expressions also help in identifying 

resemblance with other drug compounds based on likeness 

with their specific positive or negative expression profile in 

comparison to specific disease conditions and results in 

discovery of other repurposing drug candidates. Drug 

repurposing can be done by comparing disease-specific 

expressions signatures and biomarkers, and related pathways 

for inducing drug manifestation signatures that seek drugs 
having opposite effects on the disease condition and are 

effective to study drug-disease relation for repurposing and 

identification of drug targets [89].   

 

c) Connective map (CMap) – It is reinforced by a cellular 

response database of different chemical biomarkers and their 

normal controls. CMap helps in providing mRNA expression 

data from different DNA microarrays based on research that is 

working on recording different gene expressions in different 

disease conditions to create a database with similar and 

reverse signature expressions [90]. The connections in these 
expressions are measured using Kolmogorov- Smirnov 

statistical test so, in the situation of reposting, CMap can 

classify both antagonists and agonists. The research on the 

CMap tool consists of different classes like HDAC inhibitors, 

phenothiazines produced by CMap, and estrogen which are 

produced or changed during different disease conditions using 

Different Gene Expression (DGE) data for validating the 

results of drug repurposing [91].  

 

Different researchers identified various reverse drug-disease 

signatures, as in the case of obesity and Alzheimers induced 

by diet.  Moreover, they delivered identification of chemical 
compounds from a diet that can reverse the drug resistance in 

a disease condition as reported in the case of acute 

lymphoblastic leukemia and Obesity. From the time of 

development of the CMap tool it has had a big impact on 

research on therapeutic drug-related to different diseases, also 

it opened a new line of research and inquiry in the field of 

drug reposting, target and lead discovery, MoA explanation, 

system biology, and biological consideration. It provides a 

very effective and direct method of research investigation in 

the therapeutic potential of drugs, also its CMap dependent 

approach has been widely searched by different groups of 
researchers in the field of drug product discovery and 

repurposing of old drugs for different [92].  

 

d) Differentially Expressed Gene Signatures- inhibitors 

(DeSigN) - CMap and DeSigN both function on the same 

basic principle that is the disease signatures in response of 

drug mechanism associated with gene signature based on IC50 

data. DeSigN is made by using GDSC [93]. CMap and 

DeSigN both use gene expression profiles and DeSigN uses 

baseline gene expression profiles that can be tested by using 4 

GEO studies and the collective score of these studies with 
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drug response was found consistent with published research 

on GEO studies [94].  

 

e) Go-Predict- It is a tool used to integrate data from different 

public data sources including signaling pathway databases and 

drug–target-related information with cancer genomic data to 

use this information for purposes of significant drugs effective 

on gene expression. Go-Predict uses gene expression as input 

and in response, the output is in the form of similar drug 

targets. The databases used as a reference in Go-Predict are 

Gene Ontology, TCGA, DrugBank, and KEGGDrug [95].  
 

Go-Predict measures gene rank linked to its effect on the 

regulation of different pathways. In this database, the gene-

drug set is arranged based on particular GO processes to 

validate the drug ranks of all the genes regulated by that 

pathway. The researchers and authors have produced novel 

drug-DGE linkages which are also reported in different 

literature to validate drug ranks [96]. 

 

f) L1000CDS – It is a web-based interface that connects and 

uses the CD (Characteristic Direction) signatures data of 
LINCS-L100 to forecast new signals. CMap and many other 

databases used diluted Z-score [97]. The multivariate method 

and CD are more complex to identify DGE. CDS measures the 

angle between the input gene signature and LINCS-1000 data 

to make a list of possible aspirant molecules that can reverse 

and sometimes mimic the query gene and its expression. The 

researchers working on L1000CDS have forecasted candidates 

for disease signature from the GEO database. Moreover, they 

also anticipated a drug known as Kenpaullone to be effective 

against the Ebola virus and offer many related studies and 

investigations to support their claim [98]. 

 
g) Mode of Action by NeTwoRK (MANTRA 2.0) – Different 

molecular targets for drug signature can be identified using 

MANTRA 2.0 using gene expression profile before and after 

uploading drug perturbation that gets fixed into a cooperative 

learning environment [99]. A network made of the visual 

database with a new node helps the user find a nearby 

neighbor to discover new hints. They input a prototype ranked 

list (PRL) for a drug to compare between two different PRLs 

by using GSEA (Gene Set Ensemble Approach) method. It 

provides a collective, investigative, environment and 

opportunity for the users to distribute their data in other 
databases and to different users [100].  

 

h) NFFinder – Even though there are many databases to 

compare and validate studies related to drug-gene interaction, 

NFFinder uses the MARQ technique to associate the 

signatures of gene expression [101]. In this method, two sets 

of up and down-regulated genes are successively compared 

with GEO, DrugMatrix, and CMap data. They follow a two-

step validation method, first is the TCA (Trichostatin A) 

method, which is found effective in destroying MPNST 

(Malignant Peripheral Nerve Sheath Tumors), and the next is 

recovered TCA as a target hit during the gene expression 

profile study of a known tumor cells suppressor cocktail 

(PD901/JQ1) besides MPNST cells which are used as query 

[102].  

 

i) Prediction of Drugs having Opposite effects on Disease 

genes (PDOD) – As many database and web-based tools uses 

gene expression as signatures, PDOD focuses on effect-

direction and effect- type using KEGG, drug target 

information from GEO and DrugBank for communication-

based data to find any possible drug is available that can pay 

off for differentially measured disease genes [103]. Limma 
was used to discover the differentially expressed genes with a 

role they established to estimate drug-disease score based on 

parameterizing the relation between drugs – drug relation. The 

studies on this database cannot predict drugs products for all 

diseases as the prediction depends on the availability of data in 

different databases. As many researchers concluded these 

tools are successful only against selective disease classes 

[104].  

 

3. Absorption, Distribution, Metabolism, 

Excretion, and Toxicity (ADMET) studies  
ADMET studies are based on absorption, distribution, 

metabolism, excretion, and toxicity components of a drug 
product development. The entire failed drug targets are found 

to fulfil the ADMET criteria. Drug candidate discovery needs 

ADMET profiling and its early profiling helps in reducing the 

risk of study attrition. Different medium in vitro ADMET 

screening method was developed to contribute to data analysis 

at an early stage of identification of drug targets. It is an 

expensive method in comparison to other tools especially 

when the numbers of compounds to be screened are in large 

numbers [105, 106]. ADMET is more important as it reduces 

animal testing, which is a priority of research. Various in 

silico tools are developed for facilitating fast and economical 

means of ADMET profiling (Figure 2). By focusing on 
experimental properties of ADMET different QSAR 

(quantitative structure-activity/property relationship) models 

were generated which can forecast different ADMET 

properties for new chemical components [107]. Various other 

methods used ADMET-based predictions for evaluating drug 

similarities of a compound, whereas other models are used as 

part of profitable software sets based on exclusive datasets. A 

significant need for open basis software was found even 

though much soft wear is commercially available [108].  

ADMET Lab is one of the famous services which offer fifty-

three different predictions that are measured by using a multi-
task and operational graph network structural data. This 

technique can make modified fingerprints using general 

characters of a specific assignment [109]. SwissADME is a 

modified form of ADMET used to assess the 

pharmacokinetics and drug similarity of a small molecule or 

compound [110].  These forecasts are based on the 

arrangement of fragmental techniques and on machine 

learning-dependent binary classification techniques to 

consider other ADMET-related properties.  
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ADMETSar is a model-based application used for drug 

discovery and environmental risk assessments are made using 

Morgan fingerprints and MACCS. ProTox uses toxicity 

models based on the chemical likeness between compounds 

that are already identified as toxic effects and toxic fragments. 

Morgan and other similar models for mutagenicity, 

hepatotoxicity, mutagenicity, and carcinogenicity depend on 

fingerprints [111]. A protracted connective fingerprint makes 

the basis for the forecast of fifteen ADMET characteristics in 

the vNN server in which models are qualified by adaptable to 

nearest neighbor technique. pkCSM is another tool related to 
ADMET that uses graph-based gene or protein signature to 

grow prognostic models of dominant ADMET characteristics. 

Some other software tools like CarcinoPred-EL, CapsCarcino, 

and MDCKPred emphasize only one property that is 

forecasting of permeability constant and carcinogenic 

complexes. All these models are based on molecular depiction 

with a basis of different physiochemical molecular 

descriptions like fingerprints, 2D or 3D, and graph signatures. 

All these models are very famous and found as an alternative 

for QSPR studies, which gave computational tools easy and 

user-friendly for prediction and repurposing easily [112].  
 

During the last decade, a large number of fingerprinting 

including feature circular and path range were described and 

developed but ADMET-based fingerprints studies are very 

selective and limited. Some studies used this method to 

calculate the efficacy of 20 different types of fingerprints 

going from structural to extended connectivity and different 

path-centered encoding like; depth-first search, local path 

environment, and shortest path types. Some research used 

fingerprint-centered regression models to calculate fifty 

ADMET and related endpoints by data collected from 

different literature sources, which is one of the most inclusive 
compilations studied to date. The endpoint results of most of 

the predictions were found analogous with other classy 

descriptor preparations. The drawback of ADMET studies is 

constant poor fingerprint results in comparison to other studies 

using PubChem, ECFP, and MACCS, where encoding was 

found to give better results for most of the drug product-

related properties. These software and other related tools are 

created in a downloadable pack under the license of GNU.  

 
Figure 2: Different tools of ADMET studies for drug 

repurposing method. 

DATA MODELLING 

Data modeling is one of the important parts of studying the 

classification and regression of drug candidates. Random 

Forest Algorithm (RFA) was selected to build the model. In 

algorithm bagging and feature, randomness is used to build 

multiple decision trees and to connect them [113]. The 

training of these models was done using the ranger library in 

arithmetic computing environment R. The average number of 

forecast values of trees used for computing in modeling was 

fixed at 500. To each endpoint, the data was divided into 

different sets of 80 and 20% test sets. For cross-validation, a 

fivefold method was used to classify the finest performing 

model, and to avoid any choice bias researchers repeated tests 
were randomly repeated 3 times and an average result is 

considered to understand the variability. The Y-randomization 

method can be conducted to calculate the robustness of the 

ultimate model. To solve the problems related to the unequal 

spreading of samples in different classes and the data 

extension of the minority can be carried out by using the 

synthetic minority over SMOTE (sampling minority 

oversampling technique) [114].    

In the regression model, their performances were measured by 

using squared regression coefficient (R2R2) for correlating 

values of experiment and forecast. Root mean square error 
(RMSE) and mean absolute error (MAE) are used in 

classification models and metrics which are sensitive to class 

inequality. Each model consists of a fixed applicability 

domain (AD) in the limits of which its forecast can be trusted. 

In regression model prediction intervals can be measured 

using the quantile regression prediction method [115]. In this 

technique, the smallest forecast interval shows their highest 

stability predictions. In classification techniques, confidence 

and credibility are two important values that are related to 

forecasted labels based on CPF (conformal prediction 

framework). Confidence in modeling provides a degree of 

likeness of forecasting with which the comparison of all other 
classifications measures provides a sign of a good training 

method and sets for classifying the highest p-value of one or 

more probable organizations of true labels.  

 

CONCLUSION 
Bioinformatics and web-based tools can facilitate drug 

discovery and drug product development. Drug product 

development depends on predicting drug-target connections 

and validations. These can be done by using algorithms, 

computer-aided drug designing (CADD), and computational 

chemistry. Bioinformatics tools help in repurposing drugs to 

reduce the time, money, and effort needed to develop new 

drug products. These tools of bioinformatics also help in big 
data including transcriptomics, gene sequence data, and 

proteomics. Bioinformatics tools need more improvement for 

the analysis of high throughput pangenomic, protomics, 

metabolomics and metagenomimc data. The bioinformatics 

effective tools are required for better genomic assembly and 

annotation with high accuracy, to improve quality of 
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sequenced genomics without gaps, sub-genomic, polypeptide 

species, and genomes of single cells [116]. Pharmacogenomics 

and bioinformatics are still in a developmental phase and the 

tools for drug target prediction have many limitations and 

hurdles but they show huge potential to help in drug product 

development even to be patient-specific in near future.  
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