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INTRODUCTION 
The brain is in charge of regulating metabolism, behavior, and 

food intake in order to maintain energy homeostasis. It does 
this by monitoring nutritional status and making appropriate 

modifications to these factors [1,2]. Neuromodulators, and 

other metabolic and feeding-related brain systems are 

evolutionarily conserved between mammals and invertebrates. 

The cost of conducting trials and the enormous complexity of 

the brain make it difficult to study neuromodulators in 

mammals [3]. A significant invertebrate genetic model system, 

Drosophila (the fly), is used to solve these challenges [4]. 

There has been evidence that serotonin (5-HT) regulates 

appetite, somatogastric responses, and food intake [5]. 

Octoctopamine also modulates feeding and is regulated by fly 

homologs of obesity-linked genes [6]. A number of studies 
have shown that neuropeptide F regulates feeding in response 

to feeding-associated signals [7]; and normal food intake 

requires dopamine signaling [8]. 

Neuromodulators have a significant impact on animal 

behavior by influencing the activity of clusters of neurons. 

The complicated male courting desire is under 
neuromodulatory regulation. Tyramine (biogenic amine) 

related to dopamine, functions are unknown in most of the 

animals has shown to affect neurons of inferior posterior slope 

(IPS) in the Drosophila melanogaster brain. Male courting 

behavior was dramatically increased once TyrR (a tyramine-

specific receptor) that was expressed in IPS neurons was lost. 

Mutant males of TyrRGal4 showed a wild-type preference for 

females, hence this impact only materialized in the absence of 

females. Male-male courting significantly increased when IPS 

neurons were artificially activated to the contrary of what 

happened when IPS activity was suppressed. The results of the 
study indicate that TyrR functions as an inhibitory 

neuromodulator to lower the level of courting activity [9].  

 

For the purpose of identifying neural substrates of behavior, 

actions must be defined in terms that relate to brain activity. 

Motor neurons produce signals that correlate brain and muscle 

activity, but it has been difficult to define behavior in terms of 

muscle contractions apart from simple movements. Using 
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comprehensive single-cell imaging to map the muscle 

activation of the pupal fruit fly, researches describe a 

multiphasic behavioral sequence in Drosophila. A 

convolutional neural network allows us to extract major 

movements by identifying a previously undescribed 

behavioral phase. According to this study, muscle activity 

varies a great deal, and stereotypy increases sequentially in 

response to neuromodulation. A platform like this can be used 

for studying whole-animal behavior at a cellular level, 

quantifying its variability across multiple spatiotemporal 

scales, and quantifying its neuromodulatory regulation.[10]. 
The genetic toolset of Drosophila offers the opportunity to 

study the function of classical neuromodulators like dopamine, 

5-HT, octopamine, and neuropeptides in detail. Various 

mechanisms have been identified in recent years that modify 

chemosensory perception and processing in response to 

internal states, such as hunger and reproductive status, but 

future research should investigate the mechanisms underlying 

other internal states, such as the modulatory influence of 

endogenous microbiota. Additionally, illness brought on by a 

pathogenic infection may provide new insights into the 

neuromodulators circuits integrating detrimental post-taste 
signal in the circuits controlling olfactory behavior and 

learning. The extensive toolbox that Drosophila offers will aid 

in creating a tangible picture of how neuromodulation affects 

metabolism, olfaction, adaptive behavior, and brain functions 

general grasp [10].  

 

So taking all these facts in consideration, we conducted this 

study to review and compile the available Drosophila models 

to study neuromodulator therapeutic interventions. 

 

METHODOLOGY 
Up until December 2022, published publications were 

retrieved using a variety of popular databases, including 

Google Scholar, SciFinder, MEDLINE, EMBASE, PubMed, 
Scopus, and Science Direct. We searched and extracted 

published material using the keywords "neuromodulation", 

"Drosophila", "neurotransmitter", "Dopamine", "octopamine", 

and "neuropeptide" pertaining to Drosophila models used to 

explore Neuromodulator activity. Searches restricted only to 

be conducted in English. 

 

RESULTS 
Neuromodulators have the power to quickly change the 

functional output of motor circuits, especially the tiny 

biogenic amine neurotransmitters. Here, we go over the 

neurotransmitter systems that Drosophila can be used to study 

(Figure 1). 
 

Dopamine  

Dopamine (catecholamine neurotransmitter) is an important 

neurotransmitter in animals that aids in motivation, reward, 

addiction, learning, and memory. Dopamine signaling changes 

have been linked to a variety of neurologic and psychiatric 

illnesses in people. Similarly, various behavioral flaws have 

also been linked to Dopamine signaling deficiencies in the 

Drosophila melanogaster. Drosophila is an effective genetic 

model organism to study the control of Dopamine signaling in 

vivo since the majority of the Dopamine involving gene 

production, secretion, transport, and signaling are conserved 

between species. Using more sophisticated genetic, 

electrophysiologic, imaging and pharmacologic methods in 

Drosophila, it will probably be able to identify the genes and 

neural circuits that control such behaviors [11, 12]. 

 

Figure 1: Neurotransmitters that can be studied in 

Drosophila 

 
 

It is known that Parkinson’s disease is a neurodegenerative 

disease characterized by hypokinetic and hyperkinetic 

movements, cognitive/behavioral abnormalities and sleep 

problems. The primary abnormality of Parkinson’s disease is 

the loss of dopaminergic (DArgic) neurons. A lack of 

Dopamine signaling has also been linked to inherited 

dystonias, hypersomnia, restless legs syndrome, and periodic 
limb movement disorder, as well as mood disorders [13].  

 

There is a progressive degradation of the dopaminergic 

nigrostriatal pathway in Parkinson’s disease, resulting in 

postural instability, rigidity, and resting tremors. The 

Drosophila melanogaster can be used to imitate many 

elements of Parkinson’s disease, such as the genetic deletion 

of neuronal dopamine production or degeneration of 

dopaminergic neurons induced by α-synuclein. By deficiency 

of dopamine, increased levels of 5-HT and arborizations in 

particular brain regions are also induced. The observed 

changes in 5-HT neuron plasticity suggest that the behavioral 
abnormalities seen in Parkinson’s disease-related Drosophila 

models involve changes in 5-HT circuitry as well as 

Dopamine signaling loss, rather than just one or the other [14]. 

A study was done on the well-known insecticide rotenone 

(ROT), which is used in agriculture because it is inexpensive 

and works quickly. Additionally, models of Parkinson’s 

disease in animals have been established using this technique. 

Against neurotoxicity induced by ROT in Drosophila 

melanogaster, Low Molecular Weight Chitosan (LMWC) was 

examined. LMWC (5 & 10 mg/mL in basal medium) was 

administered to male adult flies of 8–10 days old over a 7-day 
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experiment to ROT induce neurotoxicity flies. Afterward, 

neurodegenerative and behavioral markers were evaluated. 

Therefore, in open-field and negative geotaxis investigations, 

flies exposed to only ROT had less locomotor behavior and 

had a higher mortality rate than the control group. In the fly 

head and body, ROT caused a drop in dopamine levels, a rise 

in reactive oxygen species (ROS), and cholinergic activity 

suggesting that ROT might cause oxidative stress. A co-

exposure to LMWC reversed locomotor impairment, 

exploratory impairment, and biochemical parameter 

alterations induced by ROT, resulting in a 16-day survival 
rate. Parkinson’s disease is effectively treated and managed 

using LMWC as a neuromodulator, according to the study 

[15]. 

 

Octopamine  

The neurotransmitter, modulator, and hormone octopamine 

has been postulated to play a range of physiological roles in 

invertebrates. The Drosophila melanogaster, which offers a 

great system for genetic and molecular research of neuroactive 

chemicals, has been used in various models of octopamine. 

Using an antiserum specific to octopamine, the distribution of 
octopamine immunoreactivity was initially investigated. 

While brain lobes lacked immunoreactive somata, the larval 

octopamine neuronal pattern consisted of conspicuous neurons 

along the ventral ganglion’s midline. However, both the 

ventral ganglia and the cerebral lobes displayed strong 

immunoreactive neuropil. It is believed that the larval body 

wall muscles were innervated by peripheral fibers that were 

transmitted by immunoreactive neurons. Octopamine has been 

linked to both central and peripheral brain processes in a 

number of insect species. It promotes flight motor activity, 

activates the firefly light organ, and modulates 

neurotransmitter activity in the locust central nervous system 
[16]. 

 

Although it is a basic activity, regulation and function of sleep 

are still poorly understood. The genetic and molecular factors 

underlying sleep and wakefulness can be addressed using the 

Drosophila model for sleep, which offers a strong system. 

Octopamine, a biogenic amine found in Drosophila, is an 

effective wake-promoting signal. Mutations in the octopamine 

production pathways results in increased sleep, which can be 

pharmacologically reversed by the octopamine administration. 

Additionally, electrically activating these neurons increased 
wakefulness compared to electrically silencing these neurons, 

which produce octopamine [17].  

 

Function of protein kinase A (PKA), which is thought to be a 

possible target of octopamine signaling and is also involved in 

Drosophila sleep. Octopamine's ability to promote flies 

wakefulness was rendered insensitive by decreasing PKA 

activity among neurons. However, the mushroom bodies, a 

location previously connected to PKA impact on sleep, did not 

experience this PKA effect. These investigations pinpoint a 

brand-new route that controls sleep in Drosophila [18]. 

According to a study, octopamine released from a group of 

neurons, not acetylcholine, serves as a positive reinforcer for a 

single food odor source, leading to attraction. A subset of 

these neurons that are activated results in aversion, which is 

the opposite behavior. This aversion is caused by the release 

of octopamine rather than tyramine because it is suppressed in 

Tyramine-hydroxylase mutants (Tβh) lacking octopamine. 

The activation of the octopaminergic neurotransmitter system 

changes the attractiveness for an ethanol-containing food odor 

to a less appetizing food odor when given the choice between 

two sources of attractive food odor. The failure of Tβh 
mutants to change their attraction is consistent with the 

octopamine requirement in biassing the behavioral outcome. 

Octopamine is not necessary for attraction to occur; instead, 

the behavior or behavioral reaction must be initiated. 

Octopamine plays a role in the attraction to ethanol, in Tβh 

mutants, octopamine signaling is pharmacologically boosted 

to make alcohol more seductive, while octopamine receptor 

function is inhibited to make alcohol less seductive. When 

taken as a whole, octopamine in the central brain orchestrates 

behavioral outcomes by swaying an animal’s preference 

towards the smell of food. This discovery might reveal a 
fundamental idea about how octopamine controls behavior in 

the brain [18].  

 

Together, these findings provide a quantitative behavioral 

model to study the CNS’s control of energy balance and a 

conserved neural substrate reveal  that connects state of 

organismal metabolic to a particular behavioral output [19]. 

 

Neuropeptide 

Studies of neuropeptide and peptide hormone signaling in 

Drosophila are maturing as a result of quick advancements in 

molecular genetics techniques that get over the limitations 
imposed by the fly’s small size. Additionally, we have 

expanding peptidomics data sets and genome-wide knowledge 

of the genes implicated in peptide signaling. Numerous 

distinct neuropeptides have been found in a wide range of 

different neuron types in various regions of the Drosophila 

nervous system as well as cells in other places. Peptidergic 

signaling in the nervous system of the Drosophila fly, 

particularly how peptides control physiology and behavior 

both throughout development and in the fully grown fly. 

Peptide signaling functions both physiologically and 

behaviorally in Drosophila. Regulation of development, 
eating, growth, metabolism, homeostasis, reproduction, and 

lifespan are among these processes, as well as 

neuromodulation of learning and memory, olfaction, and 

locomotor control. The substrate of this signaling is the 

peptide products of around 42 precursor genes, which are 

synthesized in diverse combinations in distinct brain circuits 

or serve as circulating hormones. Drosophila, there are about 

45 G-protein-coupled peptide receptors that have been 

discovered, and most of these have ligands. The range of roles 

neuropeptides and peptide hormones play in a fly’s daily 

existence is still poorly known, and certain peptides have more 

specific functions than others [20]. 
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Aggressive behavior is regulated by a variety of 

neuromodulators, including neuropeptides and biogenic 

amines. In Drosophila melanogaster, the neuropeptide 

drosulfakinin (Dsk) regulates aggression. Dsk or the CCKLR-

17D1 deletion of the Dsk receptor reduced aggression. Dsk-

expressing neurons were activated and inactivated to cause 

and prevent male aggression, respectively. Furthermore, it has 

been demonstrated using transsynaptic tracing, 

electrophysiological analysis, and behavioral epistasis that 

Dsk-expressing neurons operate as downstream effectors of a 

subpopulation of P1 neurons (P1a-splitGAL4) to regulate 
aggressive behavior. Additionally, winners have increased 

calcium activity in Dsk-expressing neurons. The promotion of 

social dominance by conditional Dsk overexpression suggests 

a connection between Dsk signaling and favorable 

consequences [21].  

 

Astrocytes 

The astrocytes that are connected to synapses all across the 

brain express neurotransmitter receptors that can raise 

intracellular calcium (Ca2+). Although it has been suggested 

that astrocyte Ca2+ signaling can modify the activity of 
neuronal circuits, the pathways governing these processes are 

poorly understood, and there is scant in vivo data connecting 

variations in astrocyte Ca2+ to changes in neurotransmission 

or behavior. According to certain research, in vivo Ca2+ 

signaling processes in Drosophila astrocytes are activity-

regulated. Through the Octopamine-tyramine receptor (Oct-

TyrR) and the TRP channel Waterwitch (Wtrw), Tyr and 

Octopamine, which are produced by Tdc2+ neurons, 

encourage Ca2+ increases in astrocytes, and astrocytes in turn 

affect downstream dopaminergic neurons. Dopaminergic 

neurons were muted when Tyr or Octopamine was applied to 

live preparations; this suppression required astrocytic Oct-
TyrR and Wtrw. Increased astrocyte Ca2+ signaling, which 

was mediated by astrocyte endocytic activity and adenosine 

receptors, suppressed dopamine neuron activity. Odor-driven 

chemotaxis behavior and touch-induced startle responses were 

significantly affected when Oct-TyrR or Wtrw expression was 

specifically disrupted in astrocytes. Our research establishes 

Oct-TyrR and Wtrw as critical elements of the astrocyte Ca2+ 

signaling machinery, shows that astrocytes can mediate Oct- 

and Tyr-based neuromodulation, and shows that astrocytes are 

required for a variety of sensory-driven behaviors [22-25]. 

Although astrocytes influence a number of crucial elements of 
brain homeostasis, their function in sleep was completely 

unknown until recently. Throughout the sleep-wake cycle, 

astrocyte activity fluctuates dynamically, and alterations in 

intracellular signaling pathways may be used to encode the 

need for sleep. Additionally, astrocytes exocytose or produce 

sleep-inducing chemicals that affect the control of sleep, sleep 

architecture, and brain activity. Numerous findings from 

Drosophila melanogaster suggest that astroglial sleep 

processes are constant throughout evolution [26]. 

The use of astrocytes in mechanistic, theoretical, and 

computational research of brain circuits offers new 

perspectives on behavior, its regulation, and its manifestations 

in disease [26]. 

 

5-HT pathway 

5-HT and other biogenic amines play a role in associative 

learning. Changes in memory performance with modifying 

either of these signals are indicative of this function. It is 

either unclear or debatable how the serotonergic system 

contributes to the reinforcement of insect associative learning. 

However, there is evidence that 5-HT is necessary for place 

memory, which is disproven by genetically altering 5-HT 
levels and employing pharmaceutical treatments. As a result, 

5-HT may be consider essential for an insect's ability to build 

memories [27]. 

 

To control various facets of the animal behavior, 5-HT binds 

to distinct ligand-gated ion and G protein-coupled receptors. 

Along with many other insects, Drosophila regulates both 

feeding and movement. The larval Drosophila has evolved as 

a helpful model for investigating the molecular and anatomical 

underpinnings of behaviors (chemosensory) due to its genetic 

adaptability and neural simplicity. This is especially true for 
the system of olfactory, which is largely detailed over the first 

3 tiers of information regarding neurons processing down to 

the synapse level. According to research, 5-HT signaling is 

involved in memory and learning of Drosophila larvae. In the 

long run, findings of these studies might reveal aspects of 

reinforcement processing that are developmental, 5-HT 

dependent, and possibly shared with adult Drosophila [28]. 

 

Millions of people suffer from Major depressive disorder 

(MDD), although the pathogenesis is poorly understood. To 

create rodent models that mimic the symptoms like 

depression, such as anhedonia, and general lethargy, 
researchers have used either unavoidable punishment (learned 

helplessness) or prolonged mild stress like vibration-stress 

strategy that lowers the voluntary behavioral activity of 

Drosophila. Treatment with lithium chloride decrease 

depressive-like condition among flies, much like it does in 

many MDD patients. Feeding the antidepressant 5-hydroxy-L-

tryptophan or sucrose, which raises 5-HT levels in the brain, 

can alleviate the behavioral abnormalities, which are 

correlated with lower 5-HT production at the mushroom body. 

5-HT-1A receptors in the mushroom body's α-/β-lobes 

facilitate this alleviation, whereas 5-HT-1B receptors in the γ-
lobes regulate behavioral inactivity. The key function of 5-HT 

in controlling stress responses in flies and mammals points to 

evolutionary conserved pathways that can serve as targets for 

therapy and methods to promote resilience [29,30]. 

 

NEUROTRANSMITTER TRANSPORTERS 
Neurotransmitter transporters carry traditional 
neurotransmitters such as the biogenic amines and 

acetylcholine as well as the glutamate, amino acid 

neurotransmitters GABA, and glycine across biological 

membranes. There are two separate functions represented by 
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plasma and vesicular membrane neurotransmitter transporters. 

Plasma membrane neurotransmitter transporters, which also 

recycle neurotransmitters once they have been released, 

prevent synaptic transmission [31]. Additionally, vesicular 

neurotransmitter transporters, which are found on the 

membranes of secretory vesicles, are responsible for storing 

and transporting neurotransmitters into the vesicle lumen [31]. 

Large dense core vesicles (LDCVs), which also store and 

release peptide neurotransmitters, as well as synaptic vesicles 

(SVs), require vesicular transporters for the storage of 

neurotransmitters [32]. Vesicular transporters do not, however, 
pack peptides into the lumen of LDCVs; rather, they do so 

while the vesicle is being generated [33]. Additionally, 

peptides do not go through plasma membrane transfer. Similar 

to this, "novel" neurotransmitters like nitrous oxide do not 

need particular transport proteins because they can be 

synthesized on its demand and can pass quite easily through 

lipid membrane barriers [34]. It is still not known if lipid-

based signaling chemicals like anandamide need particular 

transporters to penetrate biological membranes [35]. 

 

To find novel compounds that could enhance the performance 
of neurotransmitter transporters, this in vivo tools are useful. 

Drugs that would enhance signaling in the octopaminergic 

circuit necessary for the larvae's natural movement can be 

tested in larvae. The outcomes of this screening produced a 

number of compounds that, by definition, would not be 

aminergic medicines and are unlikely to directly bind 

dVMAT.  In the fly, screening for genes and medications that 

alter transport function is achievable. [35]. 

 

Vesicular Neurotransmitter Transporters 

a) dVAChT 

Research report that, the fly's dVAChT was a first vesicular 
neurotransmitter transporter that is molecularly characterized. 

One of the dVAChT mutants is the weaker allele dVAChT2, 

which survives the second larval stage but moves more slowly 

than wild type animals. DVAChT1 is embryonic fatal [36]. 

 

b) dVGLUT 

Biochemical studies revealed the fly had vesicular glutamate 

transport activity before it was molecularly characterized. 

Unlike mammals, which have 3 unique VGLUT genes, 

Drosophila carries only dVGLUT (a single VGLUT 

ortholog,). All glutamatergic neurons in the adult fly and 
larva, as well as the glutamatergic motoneurons that innervate 

the larval NMJ, express dVGLUT [37]. 

 

c) dVMAT 

Fly genomes only contain one VMAT gene, in comparison to 

the human genome’s which have two unique VMAT genes. 

The 12 anticipated transmembrane domains, which are most 

likely to be in charge of substrate recognition and transport, 

share similar fundamental structures between dVMAT and 

mammalian VMATs. In fact, the relative affinity and 

neurotransmitter substrate selectivity of dVMATs are often 

similar to those of mammalian VMATs. For instance, 

reserpine inhibits dVMAT at sub-micromolar doses [38,39]. 

 

d) dVGAT 

The genome of Drosophila has only one vesicular GABA 

transporter gene (dVGAT), just like in mammals. dVGAT 

appears to be expressed in all GABAergic neurons in the larva 

since it precisely co-localizes with GABA in the ventral nerve 

cord and is found in the majority, if not all, adult GABAergic 

neurons. It's unknown whether Drosophila use glycine as a 

neurotransmitter in the same way as mammals do, and 
whether dVGAT can store glycine as well [40,41]. 

 

e) Portabella 

A second vesicular transporter, portabella, that appears to be 

missing from mammalian genomes, is expressed by 

Drosophila and several other insects. According to studies, the 

gene's name was chosen because of its strong expression in 

MBs. Prt is expressed in the Kenyon cells (KCs), which are 

the intrinsic neurons of the MBs. Unexpectedly, it is unknown 

what neurotransmitter KCs store and release. Although prt's 

core structure is most comparable to that of DVMAT and it is 
possible that the substrate is similar to known monoamines, 

prt may transport a novel neurotransmitter even if the 

biosynthetic enzymes for Dopamine, 5HT, octopamine, and 

histamine are not present in KCs. [42,43] 

 

Plasma membrane transporters 

a) dSERT 

The plasma membrane neurotransmitter transporter which was 

firstly discovered in flies was Drosophila serotonin transporter 

(dSERT) [44]. According to this research, the substrate 

specificity of dSERT deviated from that of its mammalian 

orthologs, including a reduced affinity for certain 
antidepressants like citalopram but a larger affinity for the 

mammalian DAT antagonist mazindol. In comparison to 

hSERT, transport via dSERT also seemed to have a less strict 

demand for chloride [45] claimed that cocaine had a much 

higher affinity for dSERT than for hSERT, although  similar 

affinities for both orthologs were found [45]. 

 

b) dDAT 

Through homology-based cloning, the Drosophila dopamine 

transporter (dDAT) was discovered. Its kinetic profile is 

comparable to that of hDAT. According to in situ 
hybridization studies, dDAT expression in larvae matched the 

pattern for Dopamine neurons that had previously been 

identified. Although not all known Dopamine cells were 

detectably labelled, in situ images of adult heads partially 

match the localization of Dopamine cells. Northern blots 

demonstrate a single mRNA species of 3–4 kB. dDAT-

mediated transport, like all other DAT orthologs, is sodium 

dependent and capable of supporting both efflux and sodium-

coupled transport. However, research has demonstrated that 

cocaine inhibits dDAT, which lengthens Dopamine uptake in 

vivo. This suggests that dDAT is likely necessary for at least 

some of the behavioral effects of cocaine [46,47]. 
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CONCLUSION 
Numerous behavioral circuits involve neuromodulation as a 

key regulatory component, and modulators’ reconfiguration of 

these circuits can have both long- and short-term effects. 

Neuromodulatory systems have recently been demonstrated to 

have a significant role in the control of sleep and other 

behaviors in Drosophila melanogaster, an organism that has 

emerged as a key model system for molecular and genetic 

studying of behavior. The fly is a system that is well-

positioned to shed fresh light on the challenging problem of 

how neuromodulation might connect situation-specific 

behavioral demands with the brain’s arousal state. The fly has 

increasingly well-defined behavioral circuitry and potent 
genetic tools. 
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